
SAN JOSÉ STATE UNIVERSITY

Cheat Sheet: Web Application Development

October 3, 2022
Page 1

SAN JOSÉ STATE UNIVERSITY

Information Security Standards

Web Application Development
Standard

#
EDS Effective Date 10/3/2022 Email security@sjsu.edu

Version 7.0 Contact Information
Security Team

Phone 408-924-1530

Revision History
Date Action
5/23/2015 Initial Draft – Mike Cook

8/06/2015 Reviewed. Content suggestions. – Hien Huynh

11/10/2015 Incorporated changes from campus constituents – Distributed to Campus.

11/18/2020 Reviewed. Nikhil Mistry

10/19/2021 Reviewed. Cole Gunter

October 3, 2022
Page 2

SAN JOSÉ STATE UNIVERSITY

2/22/2022 Reviewed and updated. Janice Lew

October 3, 2022
Page 3

SAN JOSÉ STATE UNIVERSITY

Table of Contents
Vulnerability Matrix 4
Testing for Readiness 6

October 3, 2022
Page 4

SAN JOSÉ STATE UNIVERSITY

Vulnerability Matrix
Level Risk Rating Examples

Session Management High Wherever possible use built in session management. Where possible, do not store session information
in headers or cookies. Use “HttpOnly” and “secure” flags for where cookies are needed. Validate
authentication/tokens and user security roles on each page performing database actions or displaying
confidential data.

Application functions related to authentication and session management are often not implemented
correctly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit other
implementation flaws to assume other users’ identities.

Data Validation High The most common web application security weakness is the failure to properly validate input from the
client or environment. This weakness leads to almost all of the major vulnerabilities in applications, such
as Interpreter Injection, locale/Unicode attacks, file system attacks and buffer overflows.

Where possible, web applications validate all data for expected values, passed to interpreters, including
Web browsers, database systems, and command shells, use server-side, data from another source
needs to be trustworthy, etc.

Input Sanitization &
Buffer Overflow
Prevention

High/Med Fields used as input mechanisms for database queries or other tools capable of gaining access to
confidential data must be validated (Regex or other mechanism) prior to being sent to the command
interpreter.

Set character sets. Set correct locale. Set content types. Set input constraints. Validate field lengths
(input data size) and data type when processing data submitted through forms. Prior to execution,
ensure option and radio buttons data is part of the expected data set.

Injection & Cross-site
Scripting (XSS)

High Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data is sent to an
interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter into
executing unintended commands or accessing data without proper authorization.

XSS flaws occur whenever an application takes untrusted data and sends it to a web browser without
proper validation or escaping. XSS allows attackers to execute scripts in the victim’s browser which can
hijack user sessions, deface web sites, or redirect the user to malicious sites.

Server Configuration High Ensure servers are running a currently supported version (manufacturer is releasing security updates
regularly) of Operating Systems, Databases and web application software (IIS, Apache, Tomcat, etc.).

October 3, 2022
Page 5

SAN JOSÉ STATE UNIVERSITY

Ensure servers are on routine patch management cycles. Ensure servers are running appropriate
antivirus software. Servers touching public-facing networks which handle confidential Level 1 Data
and/or credentials must have encryption enabled using a currently supported encryption mechanism
(I.e. TLS 1.2) and all unsupported protocols (TLS 1.0, SSL 2.0, etc.) must be disabled. Security ciphers
must be AES 128 or better. Hashes must be SHA 256 or better. Ensure non-web data (Web.config,
logs, etc.) is stored outside the webroot. Do not use hard-coded credentials in source code. Do not
store uncompiled source code on any public network facing or database server. Separate production
from non-production where possible.

Good security requires having a secure configuration defined and deployed for the application,
frameworks, application server, web server, database server, and platform. Secure settings should be
defined, implemented, and maintained, as defaults are often insecure. Additionally, software should be
kept up to date.

Access Control &
Request Forgery

High Ensure all pages within an authenticated web application require authentication. Validate logged in user
role is sufficient to perform action or view content on all pages.

Most web applications verify function level access rights before making that functionality visible in the
UI. However, applications need to perform the same access control checks on the server when each
function is accessed. If requests are not verified, attackers will be able to forge requests in order to
access functionality without proper authorization.

A Cross-Site Request Forgery (CSRF) attack forces a logged-on victim’s browser to send a forged
HTTP request, including the victim’s session cookie and any other automatically included authentication
information, to a vulnerable web application. This allows the attacker to force the victim’s browser to
generate requests the vulnerable application thinks are legitimate requests from the victim.

Outdated Libraries High Use components, libraries and frameworks which are currently supported by the manufacturer and
receive regular security updates. Outdated libraries (i.e. Java 6) shall not be supported.

Components, such as libraries, frameworks, and other software modules, almost always run with full
privileges. If a vulnerable component is exploited, such an attack can facilitate serious data loss or
server takeover. Applications using components with known vulnerabilities may undermine application
defenses and enable a range of possible attacks and impacts

Testing for Readiness
Action Requirement Checked Where to get help

October 3, 2022
Page 6

SAN JOSÉ STATE UNIVERSITY

Qualysguard Identify OWASP Top 10 Vulnerabilities
(e.g. SQL Injection/XSS, CSRF,
Unvalidated Redirects)
TCP/UDP Port Scan & Service Discovery
Hidden Malware
Buffer Overflow
Outdated Libraries
Outdated OS
Patches Installed
Encryption/Certificates/Protocols

Qualysguard for Web Applications is
available at no cost to all state and
auxiliary IT departments. Contact the
Information Security Office for more
details.

Manual check for Source Code on
web/database server

Source Code on web/database server This should be performed by the team
responsible for code deployment. Contact
Computing Services or Database Services
for assistance.

Manual check for Antivirus Antivirus (Sophos) This should be performed by the team
responsible for code deployment. Contact
Computing Services for assistance.

Manual check for Patch Management Automated Patch Management (BigFix) This should be performed by the team
responsible for code deployment. Contact
Computing Services for assistance.

Manual check for data inside the Webroot Ensure Web.config, logs and other files are
not accessible by users of the web
application.

This should be performed by the team
responsible for code deployment. Contact
Computing Services for assistance.

October 3, 2022
Page 7

SAN JOSÉ STATE UNIVERSITY

Peer review of code Coding Practices:
● Do not store passwords in source

code
● Authentication validation must be

performed on all pages and prior to
all database read/writes.

● Input fields must be sanitized (SQL
Injection Prevention, etc.)

● Do not redirect URL’s to untrusted
sites

● Do not make use of hashes without
a salt

● Do not use outdated libraries.
● Sanitize error messages displayed

to users
● Data Validation: E.g. validate size

and type of data received from
input fields, validate all data for
expected values, etc.

Administrative Applications, Information
Security Office.

October 3, 2022
Page 8

